A Review of the Roles of Endoplasmic Reticulum Stress in Cancer Cell Metastasis
Abstract
Metastasis is a multistep and low-efficiency biological process driven by acquisition of genetic and/or epigenetic alterations within tumor cells. These evolutionary alterations enable tumor cells to thrive in the inhospitable microenvironment they encounter in the process of metastasis and eventually lead to macroscopic metastases in distant organs. The unfolded protein response (UPR) induced by endoplasmic reticulum (ER) stress is one of the most important mechanisms regulating cellular adaptation to an adverse microenvironment. UPR is involved in all stages of metastasis, playing an important role in tumor cell growth, survival, and differentiation and the process of maintaining protein hemostasis. Sustained activation of ER stress sensors endows tumor cells with better epithelial–mesenchymal transition (EMT), survival, immune escape, angiogenesis, cellular adhesion, dormancy-to reactivation capacity in the process of metastasis. Here, we discussed the role of UPR in regulating the above-mentioned abilities of tumor cells during metastasis, providing a reference for development of new targets for the treatment of tumor metastasis.UPR in regulating the above-mentioned characteristics and mechanisms of tumor cells during metastasis, providing a reference for development of new targets for the treatment of tumor metastasis.
Keywords: Endoplasmic reticulum stress, Unfolded protein response, Metastasis
Full Text:
PDFReferences
RAYMUNDO D P, DOULTSINOS D, GUILLORY X, et al. Pharmacological targeting of IRE1 in cancer. Trends Cancer,2020,6(12): 1018–1030.
LIMIA C M, SAUZAY C, URRA H, et al. Emerging roles of the endoplasmic reticulum associated unfolded protein response in cancer cell migration and invasion. Cancers (Basel),2019,11(5): 631.
URRA H, DUFEY E, AVRIL T, et al. Endoplasmic reticulum stress and the hallmarks of cancer. Trends Cancer,2016,2(5): 252–262.
CRAENE B D, BERX G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer,2013,13(2): 97–110.
OAKES S A. Endoplasmic reticulum stress signaling in cancer cells. Am J Pathol,2020,190(5): 934–946.
VALASTYAN S, WEINBERG R A. Tumor metastasis: molecular insights and evolving paradigms. Cell,2011,147(2): 275–292.
SENFT D, RONAI Z A. Adaptive stress responses during tumor metastasis and dormancy. Trends Cancer,2016,2(8): 429–442.
CHAFFER C L, WEINBERG R A. A perspective on cancer cell metastasis. Science,2011,331(6024): 1559–1564.
MASSAGUÉ J, OBENAUF A C. Metastatic colonization by circulating tumour cells. Nature,2016,529(7586): 298–306.
HSU S K, CHIU C C, DAHMS H U, et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int J Mol Sci,2019,20(10): 2518[2020-12-25]. https://doi.org/10.3390/ijms20102518.
BARTOSZEWSKA S, COLLAWN J F. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett,2020,25: 18[2020-12-25]. https://doi.org/10.1186/s11658-020-00212-1.
VANACKER H, VETTERS J, MOUDOMBI L, et al. Emerging role of the unfolded protein response in tumor immunosurveillance. Trends Cancer,2017,3(7): 491–505.
BRABLETZ T, KALLURI R, NIETO M A, et al. EMT in cancer. Nat Rev Cancer,2018,18(2): 128–134.
SANTAMARÍA P G, MAZÓN M J, ERASO P, et al. UPR: an upstream signal to EMT induction in cancer. J Clin Med,2019,8(5): 624[2020-12-25]. https://doi.org/10.3390/jcm8050624.
HAN C C, WAN F S. New insights into the role of endoplasmic reticulum stress in breast cancer metastasis. J Breast Cancer,2018,21(4): 354–362.
LI H, CHEN X, GAO Y, et al. XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cell Signal,2015,27(1): 82–89.
CUEVAS E P, ERASO P, MAZÓN M J, et al. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway. Sci Rep,2017,7: 44988[2020-12-25]. https://doi.org/10.1038/srep44988.
SHAH P P, DUPRE T V, SISKIND L J, et al. Common cytotoxic chemotherapeutics induce epithelial-mesenchymal transition (EMT) downstream of ER stress. Oncotarget,2017,8(14): 22625–22639.
CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell,2017,168(4): 692–706.
GRIVENNIKOV S I, KARIN M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev,2010,21(1): 11–19.
BI M, NACZKI C, KORITZINSKY M, et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. Embo J,2005,24(19): 3470–3481.
DEY S, SAYERS C M, VERGINADIS I I, et al. ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest,2015,125(7): 2592–2608.
NAKATOGAWA H. Autophagic degradation of the endoplasmic reticulum. Proc Jpn Acad Ser B Phys Biol Sci,2020,96(1): 1–9.
MOREL E. Endoplasmic reticulum membrane and contact site dynamics in autophagy regulation and stress response. Front Cell Dev Biol,2020,8: 343[2020-12-25]. https://doi.org/10.3389/fcell.2020.00343.
HØYER-HANSEN M, JÄÄTTELÄ M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ,2007,14(9): 1576–1582.
BERNALES S, MCDONALD K L, WALTER P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol, 2006, 4(12): e423[2020-12-25]. https://doi. org/10.1371/journal.pbio.0040423.
B'CHIR W, MAURIN A C, CARRARO V, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res,2013,41(16): 7683–7699.
CUBILLOS-RUIZ J R, BETTIGOLE S E, GLIMCHER L H. Molecular pathways: immunosuppressive roles of IRE1α-XBP1 signaling in dendritic cells of the tumor microenvironment. Clin Cancer Res,2016,22(9): 2121–2126.
SONG M, SANDOVAL T A, CHAE C S, et al. IRE1α-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature,2018,562(7727): 423–428.
THEVENOT P T, SIERRA R A, RABER P L, et al. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity,2014,41(3): 389–401.
AUF G, JABOUILLE A, GUÉRIT S, et al. Inositol-requiring enzyme 1α is a key regulator of angiogenesis and invasion in malignant glioma. Proc Natl Acad Sci U S A,2010,107(35): 15553–15558.
LIANG H, XIAO J, ZHOU Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene,2018,37(15): 1961–1975.
CHEN X, ILIOPOULOS D, ZHANG Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature,2014, 508(7494): 103–107.
WANG Y, ALAM G N, NING Y, et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res,2012,72(20): 5396–5406.
CHO J, MIN H Y, PEI H, et al. The ATF6-EGF pathway mediates the awakening of slow-cycling chemoresistant cells and tumor recurrence by stimulating tumor angiogenesis. Cancers (Basel),2020,12(7): 1772[2020-12-25]. https://doi.org/10.3390/cancers12071772.
GHOSH R, LIPSON K L, SARGENT K E, et al. Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One, 2010, 5(3): e9575[2020-12-25]. https://doi.org/10.1371/journal. pone.0009575.
URRA H, HENRIQUEZ D R, CÁNOVAS J, et al. IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nat Cell Biol,2018,20(8): 942–953.
YUAN X P, DONG M, LI X, et al. GRP78 promotes the invasion of pancreatic cancer cells by FAK and JNK. Mol Cell Biochem,2015, 398(1/2): 55–62.
LU X, MU E, WEI Y, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell,2011,20(6): 701–714.
XU L Y, ZHANG W J, ZHANG X H, et al. Endoplasmic reticulum stress in bone metastases. Front Oncol,2020,10: 1100[2020-12-25]. https://doi.org/10.3389/fonc.2020.01100.
Refbacks
- There are currently no refbacks.