A Novel rpsE Mutation Mediates High-Level Spectinomycin Resistance in Neisseria gonorrhoeae and Influences Their Biological Fitness

LI Menghua, YANG Guiqin, WANG Youwei, YONG Gang, WANG Hongren

Abstract

Objective 

 To investigate the role of a novel rpsE gene mutation in mediating high-level spectinomycin resistance in Neisseria gonorrhoeae and to evaluate its effect on the biological fitness of the bacteria.

Methods 

Spectinomycin-containing medium was used to screen for Neisseria gonorrhoeae strains with spontaneous mutations that conferred spectinomycin resistance. Minimum inhibitory concentrations (MIC) were determined, and the rpsE gene was sequenced. Changes in the growth rates of spectinomycin-resistant strain were assessed using the drop plate method and growth curves. Additionally, in vitro competition experiments were conducted with spectinomycin at different concentrations to assess changes in the biological fitness of the spectinomycin-resistant strain.

Results 

A Neisseria gonorrhoeae strain with high-level spectinomycin resistance mediated by a novel rpsE gene mutation (88_90delGTT) was successfully identified and designated NG-SPTR. Compare with the wild-type strain, the NG-SPTR exhibited reduced growth rate (optical density [OD] comparison, P < 0.05). In addition, in vitro competition experiments showed a competitive index (CI) < 1 in gonococcal base liquid (GCBL) without or with low-concentration spectinomycin (≤ 16 μg/mL). In the GCBL with 32 μg/mL spectinomycin, the CI value gradually increased from < 1 before 18 h to > 1 after 18 h. The mutant strain showed CI > 1 in GCBL with spectinomycin concentrations ≥ 64 μg/mL.

Conclusion 

 The rpsE gene mutation (88_90delGTT) mediates high-level spectinomycin resistance in Neisseria gonorrhoeae, and imposes a fitness cost on the bacteria. The biological fitness of the mutant strain is influenced by the concentration of spectinomycin.

 

Keywords: Neisseria gonorrhoeae, Spectinomycin, Drug resistance, bacterial, Ribosomal proteins, Fitness cost


Full Text:

PDF


References


WANG H, WANG Y, YONG G, et al. Emergence and genomic characterization of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in Chengdu, China. J Antimicrob Chemother, 2020, 75(9): 2495-2498. doi: 10.1093/jac/dkaa123.

SHIMUTA K, OHAMA Y, ITO S, et al. Emergence of ceftriaxone-resistant Neisseria gonorrhoeae through horizontal gene transfer among Neisseria species. J Infect Dis, 2025, 232(1): 152-161. doi: 10.1093/infdis/jiaf008.

XIU L, WANG L, LI Y, et al. Molecular screening to track ceftriaxone-resistant FC428-like Neisseria gonorrhoeae strains' dissemination in four provinces of China, 2019 to 2021. Euro Surveill, 2025, 30(6): 2400166. doi: 10.2807/1560-7917.ES.2025.30.6.2400166.

ALLAN-BLITZ L T, FIFER H, KLAUSNER J D. Managing treatment failure in Neisseria gonorrhoeae infection: current guidelines and future directions. Lancet Infect Dis, 2024, 24(8): e532-e538. doi: 10.1016/S1473-3099(24)00001-X.

KAMATH D, GREGORY S T, O'CONNOR M. The loop 2 region of ribosomal protein uS5 influences spectinomycin sensitivity, translational fidelity, and ribosome biogenesis. Antimicrob Agents Chemother, 2017, 61(2): e01186-16. doi: 10.1128/AAC.01186-16.

DU Y, CHEN X H, YAO J, et al. Research progress on bacterial resistance mechanisms and new antibacterial drugs. J Pathog Biol, 2025, 20(3): 397-400. doi: 10.13350/j.cjpb.250326.

YANG G Q, LI M H, WANG Y W, et al. Establishment and evaluation of a nucleic acid amplification test for spectinomycin-resistant Neisseria gonorrhoeae. J Sichuan Univ ( Med Sci ), 2025, 56(1): 262-267. doi: 10. 12182/20250160402.

CHEN S C, HU L H, ZHU X Y, et al. Gonococcal urethritis caused by a multidrug resistant Neisseria gonorrhoeae strain with high-level resistance to spectinomycin in China. Emerg Microbes Infect, 2020, 9(1): 517-519. doi: 10.1080/22221751.2020.1732836.

KORRY B J, LEE S Y E, CHAKRABARTI A K, et al. Genotoxic agents produce stressor-specific spectra of spectinomycin resistance mutations based on mechanism of action and selection in Bacillus subtilis. Antimicrob Agents Chemother, 2021, 65(10): e0089121. doi: 10.1128/AAC.00891-21.

VINCENT L R, KERR S R, TAN Y, et al. In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio, 2018, 9(2): e01905- 17. doi: 10.1128/mBio.01905-17.

TU M M, CARFRAE L A, RACHWALSKI K, et al. Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens. Nat Microbiol, 2025, 10(1): 53-65. doi: 10.1038/s41564-024-01883-8.

LUO J J, RONG C T, HUI L, et al. Countermeasures against drug resistance in Neisseria gonorrhoeae: research advance. Pharm J Chin PLA, 2024, 37(1): 80-83. doi: 10.3969/j.issn.1008-9926.2024.01.019.

JENSEN J S, UNEMO M. Antimicrobial treatment and resistance in sexually transmitted bacterial infections. Nat Rev Microbiol, 2024, 22(7): 435-450. doi: 10.1038/s41579-024-01023-3.

LI M H, YANG G Q, WANG Y W, et al. Establishment and evaluation of a resazurin-based microdilution assay for microbial sensitivity test of Neisseria gonorrhoeae. J Sichuan Univ ( Med Sci ), 2024, 55(1): 198-203. doi: 10.12182/20240160209.

UNEMO M, GOLPARIAN D, SANCHEZ-BUSO L, et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J Antimicrob Chemother, 2016, 71(11): 3096-3108. doi: 10.1093/jac/dkw288.

HOLMES J, MUNJOMA L, BAYLISS C D. Novel method for prediction of combinatorial phase-variable gene expression states. MethodsX, 2023, 11: 102392. doi: 10.1016/j.mex.2023.102392.

WILLIAMS E, SEIB K L, FAIRLEY C K, et al. Neisseria gonorrhoeae vaccines: a contemporary overview. Clin Microbiol Rev, 2024, 37(1): e0009423. doi: 10.1128/cmr.00094-23.


Refbacks

  • There are currently no refbacks.