Research Progress in the Molecular Regulatory Mechanisms of Alveolar Bone Restoration

WEI Jieya, XU Siqun, ZHOU Xuedong, XIE Jing

Abstract

Alveolar bone, the protruding portion of the maxilla and the mandible that surrounds the roots of teeth, plays an important role in tooth development, eruption, and masticatory performance. In oral inflammatory diseases, including apical periodontitis, periodontitis, and peri-implantitis, alveolar bone defects cause the loosening or loss of teeth, impair the masticatory function, and endanger the physical and mental health of patients. However, alveolar bone restoration is confronted with great clinical challenges due to the the complicated effect of the biological, mechanical, and chemical factors in the oral microenvironment. An in-depth understanding of the underlying molecular regulatory mechanisms will contribute to the exploration of new targets for alveolar bone restoration. Recent studies have shown that Notch, Wnt, Toll-like receptor (TLR), and nuclear factor-κB (NF-κB) signaling pathways regulate the proliferation, differentiation, apoptosis, and autophagy of osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, and adaptive immune cells, modulate the expression of inflammatory mediators, affect the balance of the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) system, and ultimately participate in alveolar bone restoration. Additionally, alveolar bone restoration involves AMP-activated protein kinase (AMPK), phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT), Hippo/YAP, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and transforming growth factor β (TGF-β) signaling pathways. However, current studies have failed to construct mature molecular regulatory networks for alveolar bone restoration. There is an urgent need for further research on the molecular regulatory mechanisms of alveolar bone restoration by using new technologies such as single-cell transcriptome sequencing and spatial transcriptome sequencing.

 

Keywords: Alveolar bone,  Apical periodontitis,  Periodontitis,  Peri-implantitis,  Signaling pathway,  Molecular regulatory mechanisms

 

Full Text:

PDF


References


LI Y, LING J, JIANG Q. Inflammasomes in alveolar bone loss. Front Immunol,2021,12: 691013. doi: 10.3389/fimmu.2021.691013.

HATHAWAY-SCHRADER J D, NOVINCE C M. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000,2021, 86(1): 157–187. doi: 10.1111/prd.12368.

YU B, WANG C Y. Osteoporosis and periodontal diseases--An update on their association and mechanistic links. Periodontol 2000,2022,89(1): 99–113. doi: 10.1111/prd.12422.

WANG Q, XIE J, ZHOU C, et al. Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement. Cell Prolif,2022,55(1): e13172. doi: 10.1111/cpr.13172.

LIU Y, PU X, DUAN M, et al. Biomimetic fibers derived from an equidistant micropillar platform dictate osteocyte fate via mechanoreception. Nano Lett,2023,23(17): 7950–7960. doi: 10.1021/acs. nanolett.3c01739.

ZAIDI M, KIM S M, MATHEW M, et al. Bone circuitry and interorgan skeletal crosstalk. Elife,2023,12: e83142. doi: 10.7554/eLife.83142.

LUO X, WAN Q, CHENG L, et al. Mechanisms of bone remodeling and therapeutic strategies in chronic apical periodontitis. Front Cell Infect Microbiol,2022,12: 908859. doi: 10.3389/fcimb.2022.908859.

GUO D, KAN S, ZHANG L, et al. IL-10 enhances cell-to-cell communication in chondrocytes via STAT3 signaling pathway. Cell Signal,2023,105: 110605. doi: 10.1016/j.cellsig.2023.110605.

GALLER K M, WEBER M, KORKMAZ Y, et al. Inflammatory response mechanisms of the dentine-pulp complex and the periapical tissues. Int J Mol Sci,2021,22(3): 1480. doi: 10.3390/ijms22031480.

CUI Y, XIE J, CAI L, et al. Berberine regulates bone metabolism in apical periodontitis by remodelling the extracellular matrix. Oral Dis, 2023,29(3): 1184–1196. doi: 10.1111/odi.14094.

FAN Y, LYU P, BI R, et al. Creating an atlas of the bone microenvironment during oral inflammatory-related bone disease using single-cell profiling. Elife,2023,12: e82537. doi: 10.7554/eLife.82537.

YANG F, ZHANG Y, CHEN Z, et al. VISTA blockade aggravates bone loss in experimental murine apical periodontitis. Front Immunol,2021, 12: 738586. doi: 10.3389/fimmu.2021.738586.

De ROSSI A, HUAMÁN S D, LEÓN J E, et al. Fibroblast growth factor receptor 2 expression in apical periodontitis in mice. Int Endod J,2020, 53(8): 1111–1119. doi: 10.1111/iej.13315.

TRINDADE D, CARVALHO R, MACHADO V, et al. Prevalence of periodontitis in dentate people between 2011 and 2020: a systematic review and meta-analysis of epidemiological studies. J Clin Periodontol, 2023,50(5): 604–626. doi: 10.1111/jcpe.13769.

ZHOU M, GRAVES D T. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol,2022,13: 998244. doi: 10.3389/fimmu.2022.998244.

WENG Y, WANG H, LI L, et al. Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol,2021,40: 101849. doi: 10.1016/j.redox. 2020.101849.

CHEN E, WANG T, TU Y, et al. ROS-scavenging biomaterials for periodontitis. J Mater Chem B,2023,11(3): 482–499. doi: 10.1039/d2tb02319a.

XIN L, ZHOU F, ZHANG C, et al. Four-octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system. Int J Oral Sci,2022,14(1): 27. doi: 10.1038/s41368-022-00177-1.

SCHWARZ F, DERKS J, MONJE A, et al. Peri-implantitis. J Periodontol,2018,89(Suppl 1): S267–S290. doi: 10.1002/jper.16-0350


Refbacks

  • There are currently no refbacks.