A Review of Research Progress in the Pathophysiological Mechanism of Stress-related Mental Disorders

LIU Bo, YUAN Min-lan, HU Yue, GE Fen-fen, WANG Jing-yi, ZHANG Wei


Stress can improve an individual’s ability to adapt to environmental changes. However, excessive stress can induce stress-related mental disorders, including anxiety disorder, depression disorder and post-traumatic stress disorder (PTSD). Stress can regulate the level of hormones and immune inflammation in the body through the brain network, neural circuits, hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, thereby causing the occurrence of mental disorders. In addition, stress can mediate the occurrence of mental disorders by regulating molecular changes in the level of genes, transcription, protein and metabolism, etc. Studies have shown that the brain-gut axis also plays an important role in the pathogenesis of stress-related mental disorders. However, the pathophysiological mechanism of stress-related mental disorders remains unclear. Besides, studies have also shown that the onset of stress-related mental disorders is closely associated with the individual's physiological and psychological qualities,which has a cross-talk with other mental and physical diseases as well. Therefore, it is important to study individual premorbid diathesis clinical, and to conduct clinical medical, basic medical, and psychological studies of the different stages of the disease, so as to obtain further understanding of the pathogenesis of stress-related mental disorders.


Keywords: Stress, Mental disorders, Neural circuitry, HPA axis, Brain-gut axis, Molecular mechanism


Full Text:



LAI J, MA S, WANG Y, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. JAMA Netw Open, 2020, 3(3): e203976[2020-09-25]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090843/. doi: 10.1001/jamanetworkopen.2020.3976.

BEAGLEHOLE B, MULDER R T, FRAMPTON C M, et al. Psychological distress and psychiatric disorder after natural disasters: systematic review and meta-analysis. Br J Psychiatry,2018,213(6): 716–722.

CHARLSON F, VAN OMMEREN M, FLAXMAN A, et al. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet,2019,394(10194): 240–248.

HUANG Y, WANG Y, WANG H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry, 2019,6(3): 211–224.

SONG H, FANG F, TOMASSON G, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA,2018,319(23): 2388–2400.

BAXTER A J, VOS T, SCOTT K M, et al. The global burden of anxiety disorders in 2010. Psychol Med,2014,44(11): 2363–2374.

PIGOTT H E, LEVENTHAL A M, ALTER G S, et al. Efficacy and effectiveness of antidepressants: current status of research. Psychother Psychosom,2010,79(5): 267–279.

ZHANG Y, DAI Z, HU J, et al. Stress-induced changes in modular organizations of human brain functional networks. Neurobiol Stress, 2020, 13: 100231[2020-09-29]. https://doi.org/10.1016/j.ynstr. 2020.100231.

DAVIU N, BRUCHAS M R, MOGHADDAM B, et al. Neurobiological links between stress and anxiety. Neurobiol Stress, 2019, 11: 100191[2020-09-29]. https://doi.org/10.1016/j.ynstr.2019.100191.

FENSTER R J, LEBOIS L A M, RESSLER K J, et al. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci,2018,19(9): 535–551.

PESSOA L. A network model of the emotional brain. Trends Cogn Sci, 2017,21(5): 357–371.

YEHUDA R, HOGE C W, MCFARLANE A C, et al. Post-traumatic stress disorder. Nat Rev Dis Primers, 2015, 1: 15057[2020-10-11]. https://www.nature.com/articles/nrdp201557. doi: 10.1038/nrdp.2015.57.

LIU W Z, ZHANG W H, ZHENG Z H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun, 2020, 11(1): 2221[2020-10-11]. https://www.nature.com/articles/s41467-020-15920-7. doi: 10.1038/s41467-020-15920-7.

TOVOTE P, FADOK J P, LÜTHI A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci,2015,16(6): 317–331.

SCHUMACHER S, NIEMEYER H, ENGEL S, et al. HPA axis regulation in posttraumatic stress disorder: a meta-analysis focusing on potential moderators. Neurosci Biobehav Rev,2019,100: 35–57.

MORRIS M C, HELLMAN N, ABELSON J L, et al. Cortisol, heart rate, and blood pressure as early markers of PTSD risk: a systematic review and meta-analysis. Clin Psychol Rev,2016,49: 79–91.

STAEDTKE V, BAI R Y, KIM K, et al. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature,2018, 564(7735): 273–277.

CHENG Y, DESSE S, MARTINEZ A, et al. TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun,2018,69: 556–567.

MENARD C, PFAU M L, HODES G E, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci,2017, 20(12): 1752–1760.

XIA C Y, CHU S F, ZHANG S, et al. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes. J Ethnopharmacol,2017,208: 207–213.

XU G, LI Y, MA C, et al. Restraint stress induced hyperpermeability and damage of the blood-brain barrier in the amygdala of adult rats. Front Mol Neurosci, 2019, 12: 32[2020-10-15]. https://doi.org/10.3389/fnmol.2019.00032.

ZRZAVY T, HÖFTBERGER R, BERGER T, et al. Pro-inflammatory activation of microglia in the brain of patients with sepsis. Neuropathol Appl Neurobiol,2019,45(3): 278–290.

COLONNA M, BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol,2017,35: 441–468.

LAURANS L, VENTECLEF N, HADDAD Y, et al. Genetic deficiency of indoleamine 2, 3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med,2018,24(8): 1113–1120.

WON E, KIM Y K. Stress, the autonomic nervous system, and the immune-kynurenine pathway in the etiology of depression. Curr Neuropharmacol,2016,14(7): 665–673.

KIM Y K, JEON S W. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol,2018,16(5): 574–582.

KIM Y K, AMIDFAR M, WON E. A review on inflammatory cytokine-induced alterations of the brain as potential neural biomarkers in post-traumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry, 2019,91: 103–112.

LIU D, RAY B, NEAVIN D R, et al. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatry, 2018, 8(1): 10[2020-10-15]. https://www.nature.com/articles/s41398-017-0056-8. doi: 10.1038/s41398-017-0056-8.

POMPILI M, LIONETTO L, CURTO M, et al. Tryptophan and kynurenine metabolites: are they related to depression?Neuropsychobiology,2019,77(1): 23–28.

CRYAN J F, O'RIORDAN K J, COWAN C S M, et al. The microbiota-gut-brain axis. Physiol Rev,2019,99(4): 1877–2013.

BAILE M G, GUINEY E L, SANFORD E J, et al. Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain. Mol Biol Cell,2019,30(25): 3057–3072.

COLLINS S M, SURETTE M, BERCIK P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol,2012,10(11): 735–742.

SHERWIN E, BORDENSTEIN S R, QUINN J L, et al. Microbiota and the social brain. Science, 2019, 366(6465): eaar2016[2020-10-20]. https://science.sciencemag.org/content/366/6465/eaar2016.long. doi: 10.1126/science.aar2016.

PELLEGRINI C, ANTONIOLI L, COLUCCI R, et al. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases? Acta Neuropathol, 2018,136(3): 345–361.

ZHENG P, ZENG B, ZHOU C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry,2016,21(6): 786–796.

ZHAO Y, YANG G, ZHAO Z, et al. Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav Brain Res, 2020, 395: 112853[2020-10-25]. https://doi.org/10.1016/j.bbr.2020.112853.

DINAN T G, CRYAN J F. Brain-gut-microbiota axis and mental health. Psychosom Med,2017,79(8): 920–926.

DEAN K R, HAMMAMIEH R, MELLON S H, et al. Multi-omic biomarker identification and validation for diagnosing warzone-related post-traumatic stress disorder. Mol Psychiatry,2020,25(12): 3337–3349.


  • There are currently no refbacks.